
Two-Dimensional  Partially Visible Object  Recognition  Using 
Efficient Multidimensional  Range  Queries' 

Paul G. Gottschalk Jerry L. Turney  Trevor N. Mudge 

Robotics  &search  Laboratory, EECS Department,  University of Michigan,  Ann  Arbor, 48109 

Abstract 

An important task in computer  vision is the recognition  of 
partially  visible  two-dimensional  objects  in a gray  scale  image. 
Recent works addressing  this  problem  have attempted to match 
spatially  local  features  from the image to features  generated by 
models  of the objects. However,  many algorithms  are  less  efficient 
than is  possible.  This  is  due  primarily  to  insufficient attention be- 

matching.  In  this  paper we discuss an algorithm that addresses 
ing  paid to the issues of reducing the data in features  and  feature 

both of these  problems.  Our  algorithm  uses  the  local  shape of 
contour  segments  near  critical  points,  represented in slope  angle- 

These fundamental feature  vectors  are further processed  by pro- 
arclength  space (8-5 space), w the fundamental  feature  vectors. 

jecting  them  onto a subspace of 8-8 space that is  obtained by 
applying the Karhunen-LoBve  expansion to all  critical points in 
the model  set to obtain the final feature vectors.  This allows 
the data needed to store the features to be  reduced, while  re- 
taining  nearly  all  their  recognitive  information.  The resaltant 
set of feature vectors  from the image  are  matched to the  model 
set  using  multidimensional  range  queries to a database of model 
feature vectors.  The  database is implemented  using  an  efficient 

dure for  one  image  has complexity O ( I  log I + I log N ) ,  where I 
data-structure called a k-d tree. The entire  recognition  proce- 

is the number of features in the image, and N is the number 
of model  features.  Experimental  results  showing our algorithm's 
performance on a number of test  images  are  presented. 

1 Introduction 
A problem which has received considerable attention  in  the  computer 

vision literature is that of recognizing two-dimensional (2-d) partially 
visible objects in a gray scale image. In  addition to being an  important 
problem whose solution  has  many  practical applications, it i s  an impor- 
tant  step toward the solution of the  more difficult problem of recognizing 
three-dimensional (3-d) partially visible objects  in  an image. The prob- 
lem of recognition of partially visible objects is sometimes called the bin 
of parts  problem after  the way that  parts are commonly presented  for 
batch assembly in industry: piled in a bin. The general bin of parts 
problem  (with  no  constraints on the  objects that may appear  in scenes 
except that  they  be  rigid)  has  been  described as the most difficult prob- 
lem in automatic assembly 191. In  this  paper, we present a solution to  the 
bin of parts problem where the  objects  are 2-d or have a small  number 
of aspects  (and hence are essentially 2-d). 

There  are  three  very general goals which should be common to all 
object  recognition systems: accuracy, robustness,  and efficiency. The 2- 
d partially visible object recognition algorithm  presented here is highly 
accurate,  robust,  and efficient. In addition to  being a novel approach to  
the  problem of 2-d partially visible object recognition, we will argue that 
our  algorithm achieves the goals of accuracy, robustness,  and efficiency 
to a greater  extent than many  previous  algorithms. For a thorough re- 
view of previous work relating to  2-d object recognition, the  reader is 
referred  to [IS] and [SI. While no work we know of combines all of the 
elements of our present work, a number of previous works have one or 
more  similar  aspects. Freeman 171, like us, uses critical  points as his 
fundamental  features  (critical  points  are discussed in  detail  later). He 
augments  this  set  with  other  types of geometrical features, which we 
do  not use, such as end  points, intersections, and  points of tangency. 

'This work wan supported in part by AFOSR  grant 080012 and ARO  grant 
DAAG29-84K-0070 

CH2113-3/87/0000/1582$01.00 C 1987 IEEE 

Perkins [ll], Yam et  al. 1161, Mckee e t  al. [lo], and  Turney 115) have all 
employed the slope anglearclength  representation of edges (discussed 
later).  The  features  and  the  matching  strategies used in these works 
differs considerably from o m ,  however. Bolles and  Cain 131 have used 
highly informative  features to  advantage, aa has  Turney 1151. A por- 
tion of our  hypothesis verification algorithm is similar to  the hypothesis 
verification schemes in [3] and 181. 

2 Two-Dimensional bjjecd Recognition 
Conceptually, the simplest  strategy  for recognizing 2-d objects in an 

image is to  attempt to match  the  model of each possible object at every 
position  and  orientation in the image. In two-dimensions, this approach 
is computationally feasible though very slow. In  order to speed  up  the 
recognition procedure,  most  object recognition techniques use features 
of the objects. Typically the recognition procedure attempts  to  match 
the  features  from  the models of the  objects to features in the image. A 
feature is a processed version of the image data which has  the desirable 

Ottline Pre rooassin Online Re nition Processi 

image O~dl lOnS 

Aliw6 ~pdme dablow. s e" CII,O" 

HYPO!PBL* 

FiMlHpOIheSeS 

Figure 1: An Abstract View of the Recognition Process 

property of greatly reducing the  data needed to represent  the  image 
adequately.  At the same  time,  extracting a feature should sacrifice as 
little of the recognitive information in the  image as possible. It is desired 
(and  often  true)  that  the  time taken to extract  the  features  from khe 
image is more  than  made  up by the  reduced  time needed to perform 
recognition. Generally, the  extraction of features is a relatively low-level 
operation and can  often  be  done very quickly using special hardware. 
In the case where the recognition of partially visible objects is required, 
it is necessary that spatially local, or combinations of spatially local 
features  be used. Any global  features would  be too  prone to distortion 
if an  object  in  the scene was occluded by  another. 

Figure 1 shows the general strategy which many recognition proce 
dures use. Examining  the online half of Figure 1, the  input image may 
be processed to extract higher level representations  such as boundary 
negments, regions, or (as in our case) edge contours. These represen- 
tations may then be further processed to detect features. The  features 
may  be  represented by a set of numbers,  often called a feature vector. 
The image  feature  vectors  are  then  compared to  all of  bhe model feature 
vectors. Those  model  feature  vectors  that  are close enough to  an  image 
feature  vector, according to some metric,  are hypothesized to exist in 
the  image  at  the  position  and orientihtion  given by the  image  feature 

1582 



veeto?. These  initial  hypotheses  must  then  be  verified or rejected. The 
hypotheses that pass the final  verification  phase  are  those  which  are 
most likely to hypothesize the correct  object  appearing at  the correct 
pose in  the image. 

The offline preprocessing  branch of Figure 1 starts  with  a model 
generation  phase.  Models  are  typically  generated  by  processing a set of 
training images or by a CAD  system [13]. Features  are  then  extracted 
from  the models  in the  same way as in  the  feature detection  phase in 
the recognition branch of the figure. As a  final step  in offline processing, 
the model  features  may  be  organized  into  a data  structure which  can 
then  be accessed  during the  feature  matching phase of the recognition 
procedure. 

A very important aspect of the recognition  process i s  the  relationship 
between the  offline  step of model  feature  organization  and  the  online  step 
of feature  matching (see  Figure 1). A  very  powerful  means of speeding 
up  the  feature  matching  stage is available  through the organization of 
the  data  structure  that  the model  feature  organization  stage  creates; 
this  data  structure should  be  organized  for  the  fastest  possible  retrieval 
of the  matching model  features.  Some  algorithms  have  taken  a step  in 
this direction.  For  example,  Turney [ 141 sorts  the set of model  features 
by their saliency  (saliency formalies  the notion of informativeness of 2-d 
features). However, the  matching process is still  a linear  search.  Knoll 
and  Jain [SI choose  a  set of features  from  the model so as to reduce 
overall  recognition  time. However, the improvement that  this  strategy 
can  yield is limited  since  again  the  matching  process is a  linear  search. 

It is possible to organize the  set of model  features  such  that  the 
feature  matching is much  more efficient than a linear  search. To this  end, 
it is useful to view the  operation of retrieving  those  model  feature  vectors 
which  match a feature  vector  from  the image as an  an  abstract  data  type: 
given a K-dimensional  vector, return  a list of all K-dimensional  vectors 
from a set of such  vectors that lie within  a  K-dimensional  neighborhood 
(as defined by some  distance  metric) of the original  vector.  A  number of 
data  structures have  been  proposed  in the  database  literature  that allow 
this  retrieval  to  be  done  in average  case O(1og N) time,  where N is the 
cardinality of the  set of vectors to be  searched [2]. This is in  contrast 
with  the O(N) time of a linear  search. In Section 3, we discuss how one 
of these data  structures,  a k-d tree, can be used to  do very  fast  feature 
matching. 

3 A New Two-Dimensional  Object  Recog- 
nition Algorithm 

3.1 Selection and  Computation of Feature  Vectors 
Our  algorithm  recognizes  objects  entirely by the  shape of contours. 

A contour  consists of edge  points  which  have  been  linked  together  into 
a single  edge  segment and  stored  in a data  structure, typically  a  linked 
list. We chose to  represent  the  contours  in slope  angle-arclength  space 
(6-9 space  hereafter) as opposed to a Cartesian  representation. In the 
6-9 representation of a  contour,  the  ordinate is the slope  angle at  the 
point of interest  on  the  contour (e), while the abscissa is the  arclength 
( a )  measured  from  some  point of reference  on the  contour  to  the  point 
of interest. 

We have a number of reasons  for  choosing to represent  contours in 
6-8 space.  One fundamental consideration is that  the 0-8 representa- 
tion simpli6es the  construction of features that are  invariant to image 
translation  and  rotation.  %anslation invariance is automatic,  since all 
quantities  are measured  from a point of reference  on the  contour. As 
for  rotation invariance,  note that  the  rotation of a  contour  in  Cartesian 
space  corresponds to a  simple  shift in the  ordinate (e) of the 8-8 r e p  
resentation.  To  normalize  contours  with  respect to  rotation,  an offset 

'A hypothesis, as we shall use the  term,  consists of two  parts: Rrst, a  conjecture 
as to the  identity of an  object  in the image and second,  a  conjecture as to  the 
pose of the  object  in  the  image. In  more  formal terms,  (and the way in which  we 
mhall use  the word) a  hypothesis  is an ordered pair ( M , T )  where M is  a  model 
which is  hypothesized to appear  in the image, and 7 is  a  transformation which 
is  applied to  the model  in order to place it  at  the  hypothesieed  pose. In our case 
the transformation 7 is  always  chosen so that  the  pow of the model  feature, F,, 

metric. We shall,  in order to facilitate the discussion,  often  speak of a  hypothesis 
which matches  an  image  feature, F;, are a8 close as possible,  according to some 

to be the model M after  applying 7 to it. 

I s  
Figure 2: Shown  above is the puzzle piece contour  represented  in  both 
Cartesian  space  (top)  and 0-8 space (bottom). Marked  in both curves 
are  the location of critical  points.  Positive  extrema of curvature  are 
marked  with  circles,  and  negative  extrema of curvature  are  marked  with 
squares. As mentioned  in the  text,  the  critical  points  are  the edge  points 
marked  by  a  one-dimensional  derivative of a  Gaussian  edge detector ap- 
plied to  the 0-8 representation of the  contour. 

Cartesian CPN Features B-S CF'N Features 

Figure 3: Above on the left  are  several  typical  puzzle  piece CPN fea- 
tures  in  their  Cartesian  representation,  and above  on the  right  are  the 
same  features  represented  in 8-8 space.  Note the  similarity of the 8-8 

representations. 

is added  to 0 so that  the reference  point on the  contour is some stan- 
dard value,  such as zero. .If this is done,  then  the 6-9 representations 
of rotated versions of some  Cartesian  contour  are  the  same.  Other  ad- 
vantages of the 0-8 representation,  such as singlevaluedness  and the ease 
with  which  our  features  can  be extracted,  contribute  to  the efficiency of 
the  algorithm at  various  stages.  These  aspects of the 0-s representation 
will  be  explained  in  more detail as the  pertinent  portions of our algo- 
rithm  are discussed. See [13] for  a  more  detailed  exposition of the 6-9 

representation  apd  its  propertiea. 
The choice of the 8-3 representation  for  contours is only an  interme 

diate  step  to  the  extraction of the final  feature  vectors  in  our  algorithm. 
Since we have as a  goal the recognition of partially  visible  objects, we 
must use spatially  local or a  combination of spatially  local  features. We 
have  chosen  our fundamental geometric  features to be  neighborhoods of 
critical  points, i.e. fixed length  portions of contours  with  critical  points 
at their  centers. A  critical  point is defined to be  a  point  on  the  contour 
of an  object  where there is an extrema of curvature.  Attneave 111 and 
Turney [13] have  argued that  contour segments  which  contain  critical 
points  have  high  information  content  relative to those  contour  segments 
comprising an object which do  not  contain  any  critical points.  An  addi- 
tional  advantage  that  critical  points possess is that  they are  easily and 
quickly extracted by the  application of a  one-dimensional  edge  opera- 
tor  to  the 0-8 representation of the  contours  (by definition,  a  critical 
point is a point of rapidly  changing  slope  on the 8-8 curve  representing 
a contour).  It is for  the reasons given above that we have  chosen to use 

1583 



critical  point  neighborhoods as the  fundamental  geometric  features  in 
this work. 

Figure 2 shows  a  contour whose critical  points  have  been  marked  in 
its Cartesian  representation as well as its 0-5 representation.  The  critical 
points  in  the figure are the edge  points  marked  by  a  one-dimensional 
derivative of a  Gaussian  edge  detector. 

Critical  point  neighborhood  (CPN)  features,  while  being  much  more 
informative  on  average  than  other  segments of a  set of contours,  are 
nevertheless not  a very efficient encoding of the  important recognitive 
information.  Examination of Figure 3 reveals that  many CPN's  look 
similar. This  indicates  that samples  in  a  contour of a CPN feature  are 
highly  correlated  with  each  other, i.e., it is possible to predict  with  high 
accuracy what  the value of a  sample  will  be given the  values of some 
other  samples  on  the  CPN's  contour.  The  Karhunen-Ldve  (K-L) ex- 
pansion,  a  standard  data compression  technique  in  signal  processing, 
takes  advantage of highly  correlated  data. Rosenfeld and  Kak [12] de- 
scribe how the K-L expansion  can be  employed with  success to compress 
picture  data. We use it  in  the present work to reduce the  data needed 
to  represent  the  CPN  features described above. 

The  form of the K-L expansion we shall  use  applies to real  random 
vectors.  Therefore, in  order  to apply it  to  CPN features, we first must 
view them as vectors. The 8-s representation of CPN  features is a 
single  valued  function of one  variable.  In  practice  the  representation is 
discretized and  contains  a finite  number of samples.  Each  sample  can be 
considered to be  a  component of a  real  vector of some  dimension,  say N. 
The set of CPN features  can now be viewed as the result of trials of an 
underlying  real  random  vector X of dimension N. Let R = E [ X p ]  be 
the auto-correlation matrix o € X .  Since R is non-negative  definite, there 
exists a set of orthonormal  eigenvectors  and  associated  eigenvalues of 
R, gk and Xk 2 0 respectively,  where k = 1,. . . , N. Define the  random 
variables Y k  = &: X. Without loss of generality, we may  assume that 
the eigenvectors & are  ordered so that X1 2 Xz 2 . . . 2 AN. Examining 
the cross  correllations of the Y k ,  we find 

E [ y k K ]  = E [ ( & X ) ( & X ) ]  = E[(&X)(&X) ' ]  = 

&.E[XX"l& 2 &:R& = X 1 h  (1) 

where ~$4 is the Kronecker delta  function.  This implies that for k # I ,  
Y k  and YI are  orthogonal  random  variables. If X is zero mean,  then 

E[&] = E[& X ]  = & E [ X ]  = 0. (2) 

Therefore,  when X is zero  mean, we have  from (1) and (2) that 

E[ykK]  = 0 = E [ Y k ] E [ x ] ,  k # 1. (3) 

This implies that when k # I ,  Yk and  are  uncorrelated  in  addition to 
being  orthogonal.  When k = 1, we get that 

E[&?] = var(Yk) = X k .  (4) 

With  the &k as the K-L basis,  and the  random variables Yk as the 
coefficients, we arrive at the  Karbunen-Lobe expansion of X: 

N 
- x = Yk&. ( 5 )  

k= 1 

The  mathematics  in  the  preceding  paragraph  do  not  clearly  illumi- 
nate  the reasons that  the K-L expansion works  well as a data com- 
pression  technique.  Geometrically, the K-L expansion chooses a special 
basis  in the N-dimensional  vector  space  in  which X is defined. This 
basis  has the following  property: the basis  vector k1 defines the direc- 
tion  in  which X has  the greatest  variance (i.e. Yl, the projection of 

vector 4 defines the direction  in the subspace  perpendicular  to &, in 
which y h a s  the greatest  variance,  and so on until  all dimensions are 
defined.  Therefore, the K-L expansion chooses a  basis  which,  when X 
is represented  in  terms of it, will  concentrate  the  total variance of X 
into  its lower numbered  components. A subspace whose basis  vectors 
4 are  associated  with  those Y k  having  small  variance  may be ignored 
wlth negligible effect upon  the probabilistic  properties of X. The  result 

- X in  the &, direction,  has  the  maximum  variance);  the  second  basis 

of this is that  the original feabure vectors  can be projected onto  a space 
of smaller  (often  considerably  smaller)  dimension  and still  retain  most 
of their  information. 

Before applying  the K-L expansion to compress the  data needed to 
represent  the  CPN  features,  it is necessary to make the  data zero  mean, 
since this  decorrelates  the 9 .  Let S = { E ,  i = l,.. . ,V}  be the 
set of all  feature  vectors  in  the  object  set  (extracted  from  models  or 
training  images),  where V is the number of CPN  features found  in the 
training  images.  The  set of zero  mean  feature  vectors  derived  from S is 
T = {Ei = - M, k = 1,.  . . , V}, where &f is the sample  mean of S. 
R is estimated  from T by the formula 

Using the  estimate3 of R, the K-L expansion  formulae  can ehen be 
applied to  obtain  estimates of the basis  vectors $ as well as estimates 
of the variances Xk of the uncorrelated  random  variables Y k .  The  data 
reduction is effected by retaining  only  those  basis  vectors & associated 
with  the Y k  having the largest  variances. Define the  total variance of x, u,, as 42x1. Note  also  thab uz = x,"==, x k ,  since the $ are  an 
orthonormal  set.  The  number of &'s retained, L, is determined by the 
fraction of uz we wish to  retain4.  The reduced  feature  vector, &, of any 
CPN  feature E can  then be computed by the formula & = P(E - M), 
where P is the L X N matrix whose rows  are the L retained & ordered 
such that  the & with  the largest  associated  variance  appears at  the  top, 
the & with  the second  largest  variance  appears  second  from the  top, 
and so on to  the  bottom where the  last  retained & (associated  with the 
smallest  variance)  appears. 

Figure 4 shows the K-L basis  vectors, $, which  have  been  computed 
using the  entire  set of CPN  features from the  training  set,  the associated 
variances of the Y k ,  and  the reduced  feature  vectors of the  sample of 
CPN features. In  our case, 95% of the  total variance was retained;  only 

Basis in B S  %of Variance BasisinCartesian 

--,-- 60.2 A 

W 29.7 / 

-4 1.1 _rL 

Figure 4: Above on the left are  the basis  vectors  which  result  from a p  
plying the K-L expansion to all of the  CPN  features  in  the  model  set  (in 
this case,  a  set of ten  puzzle  pieces)  are  represented  in 8-s space. In the 
middle of the figure is the percentage of the  total variance  associated 
with  each  basis  vector. At the f a r  right  are  the  Cartesian  representa- 
tions of the basis  vectors. 

5 dimensions  out of an initial  total of 45 were necessary to achieve the 
95% variance  figure.  This is a  reduction  in data by nearly  an  order of 
magnitude.  Figure 5 shows the projections of some  typical CPN  features 
onto  the reduced  basis  obtained  from  applying the K-L expansion to the 
CPN's of a  set of puzzle piece contours. 

sWe shall use the same symbols for both quantities and their estimates. 

"he fraction is  a design parameter. Adjusting the fraction allows data reduction 
to be traded off for informativeness. If the fraction is very close to loo%, there 
will be less data reduction but the reduced features will  represent the original 
features more closely. On the other hand, a lower fraction will increase the  data 
reduction at the expense of a less perfect representation of the original featurea. 
As discussed in the text,  a fraction quite close to 100% (e.& 95%) atill yields a 
large data reduction. 

1584 



mN'S in Cartesian C P N ' S  in eS Projection onto 5-d Subspace 

r-. (3.7 , -2.6, -1.7, 0.1, 0.2) 

A 
If J---w, (-3.5, 0.3, 3.4, 1.4, 0.6) 

I-J\ 

n L/ (5.4, 3.8, 0.2, 0.5, 0.3) 
J 

v A (-2.8, -3.0, 1.3, 0.2, 0.0) 
Figure 5: On  the left  are  shown  some  typical  puzzle piece CPN features 
in  Cartesian  space. In the middle  are  their 0-s representations.  On  the 
right  are  their  projections  onto  the  reduced  basis  made  up of the five 
vectors  shown  on  the  left  in  Figure 4. 

3.2 Feature matching 
The  step following the  computation of the  reduced  feature  vectors 

from the  image is that of matching  those  vectors  to  the  reduced  feature 
vectors  computed  from  the  training  images.  Since,  even  for  small  object 
ret  such as those  used  in  our  experiments,  there  are  several  hundred 
reduced  model  feature  vectors to be compared  with  each  reduced  image 
feature  vector, it is crucial that  the feature  matching method be as 
efficient as possible. 

It was  mentioned  briefly  in  Section 1 that  the problem of matching 
can  be stated as a  problem in  near neighbor  retrieval  from  a  set: given a 
set of K-dimensional  vectors,  retrieve all those  vectors  in the  set which 
fall  within a K-dimensional  neighborhood of another  vector. We shall 
henceforth  call this  operation a neighborhood  search6. The definition 
of neighborhood  includes the choice of a  distance  metric.  One  general 
class of metrics is defined  by 

J 

where K is the dimensionality of the vectors g and & ai and bi are  the 
components of e and b respectively,  and n is the  order of the metric. A 
special  case of (7), the Dm metric,  or  Chebeychev  metric, is obtained 
as n -+ w and  can  also  be  written as 

Dm(g,b) = maxlai - biI (8) 

A 6 neighborhood of a vector 9 with  respect to D,, denoted N(6,5,  n), 
is defined as the set of allvectors  rsuch  that D,(r,g) < 6. Furthermore, 
for  later use, we note  that  the inequality Dm (Q, b) 5 D, (0, b) ,  V a, b E 

BPK implies that N(6,  E, w) contains N(6,9,  n) for  all  finite n. 
A neighborhood  search  using the Chebeychev  metric  can be reduced 

to a special  case of a  problem in  database theory,  namely that of mu& 
tikey  range  searching. The problem of range  searching  can be  stated as 
follows: given a set of records with K real  valued keys, retrieve  those 
records  where  the keys of all of the  retrieved records  fall  within a range 
specified for each key. We can  use  range  searching to retrieve  all  vectors 
of a  set that  are contained  in N(6,5 ,  w) by letting  the each  component 
of the  vectors  be  a key and  choosing the ranges  for  each  key to  be  the 
intervals [si - 6, si  + 61 , (i = 1,. . . , K), where the si  are the components 
of g. 

There  are  a  number of data  structures known that may be  used to 
perform  the  range searching  operation 121. The k-d tree  was  chosen  for 

i 

=Note  that  there  are two distinct ways in which we have used the word neighbor- 
hood. The most recent  usage  in the phrase "neighborhood search" is a  common 
usage in  mathematical analysis. I t  refers to all  vectors  in  a  vector  space which 
are  within  some  distance of another  vector.  The  metric,  or  distance  measure, is 
ours to  deflne as long as it  obeys some basic rules.  The  other,  quite  different, 

interval of arclength  in  the 8-8 representation of a  contour which has  a  critical 
usage occurs in the  phrase "critical point neighhorhood".  This usage refers to  an 

point  at its center. The context  should make the usage clear. 

our purposes,  since it  has  the  best average  case  query  time,  preprocessing 
time,  and space  requirements  in  addition to being the easiest to code. 

A k-d  tree is a  binary  tree  with  two  pieces of additional  information 
stored at  each  node, a key identifier  and  a  discrimination  value. The  tree 
ia organized  such that  at each  node  all data stored  in  the left subtree  has 
the key indicated  by  the  node's key identifier less than  the  discrimination 
value  while the  data on the  right  has  the key indicated by the node's key 
identifier  greater than  the discrimination  value stored  at  the node. All 
data  in  a  k-d  tree is stored  in  its leaves. The  leaves are  lists of less than 
some  predetermined  length  which  contain data satisfying the  constraints 
of all of the  ancestor nodes. 

In our application,  the  k-d  tree need not support  random  insertions 
and deletions, i.e. all of the  data in  the tree is known a priori. Under 
these  conditions,  it is possible to balance the k-d tree  during  its con- 
struction unless the  data is highly  degenerate6.  This is done  by first 
computing  the variance of each key over  all  records. The key with  the 
largest  variance is selected as the  root node's  discrimination key (orga- 
nizing the  tree  in  this way makes  queries  more efficient [2]). Denote this 
key as a. The median of a is found and  this value  becomes the  root 
node's  discrimination value. The records  are  then  divided into sets: 
those  where a is less than  or  equal  to  the  discrimination value  (these 
records  are  stored in the left subtree),  and  those where (I is greater than 
the  discrimination  value  (these  records  are  stored  in  the  right  subtree). 
The  entire  procedure is repeated  recursively  on  each  set to create  the 
children of the  root node.  The  procedure  terminates  when there  are less 
than  a given number,  say J (s ix  in  our case),  records left in  the  set. J 
is chosen  such that  the cost of a query is minimized.  In the case  where 
there is less than J records  left  in the  set,  a leaf,  which is a l i k e d   l i t  
of less than J elements, is formed. 

Searching  a  k-d tree is a simple  recursive  procedure. A range is 
specified  for  each key; the  task is to retrieve all records  where  the  value 
of every key falls into  the corresponding  range  for that key. At  each 
node that is not  a  leaf  (starting  at  the  root)  the  range associated with 
the  discrimination key of the node is compared  with the  discrimination 
value  stored at  the node. If the  range  interval lies completely  above 
the  discrimination  value,  the  result of a  recursive  call  made  on the  right 
subtree  only is returned.  Similarly, if the  range  interval lies  completely 
below the  discrimination  value,  the  result of a  recursive  call  made  on 
the left subtree  only is returned. If the  range  interval  straddles  the 
discrimination  value,  recursive  calls  on  both  the left and  right subtrees 
are  made.  The  results of the calls  are  concatenated  and  then  returned. 
The procedure  terminates when a leaf is encountered. In this case, the 
list making  up  the leaf is scanned and  any  records whose  keys do  not  fall 
in  all of the  range intervals  are  excluded.  A  linked list of the  remaining 
records is returned. 

We have  shown that  the k-d  tree  can  perform  neighborhood  searches 
with  respect to  the D ,  metric. It is simple to modify the algorithm to 
perform  neighborhood  searches  with  respect to all of the  metrics repre- 
sented  by (7) with no  increase  in  complexity  for  either  queries,  space, 
or preprocessing. It was  noted  previously that for  a given 6 ,  N ( 6 , g ,  w) 
contains N(6 ,g ,  n). Thus,  all  that  must be  done to implement  a  neigh- 
borhood  search  for  finite n is to scan the  result of a N ( 6 , 9 , w )  search 
implemented  by a K-dimensional  range  search  using  a k-d tree  and ex- 
clude  those  vectors that  do not fall into N(6,a,  n). The complexity of a 
query  remains  the  same as the N(6,s, w) case,  because the search  via 
the k-d  tree is an O(1og N + F) operation,  and  the scanning  complexity 
is O(F), the query  complexity  remains  O(log N + F )  (recalling that N 
is the size of the  set  to be  searched,  and F is the size of the  retrieved 
set) even with  the  addition of the exclusion  step. 

Feature  matching in our  algorithm is a  neighborhood  query of the 
set of reduced CPN feature  vectors  from the model  using the Euclidean 
neighborhood N(6,&, 2), where is the reduced  image  feature we are 
matching  against.  The  value of 6 is adjusted so it is just large  enough so 
that, for  most  features, the correct  match  will  be  generated  amongst the 
other  matches if the  CPN  feature  in  the image is unobscured. We have 
found,  in  the object  sets we have tested,  that  there  are usually  three or 
four  model  features in  the neighborhood of a given image  feature.  Each 
of these  matches  generates  a  hypothesis that will need to be  tested  by 

'The degeneracy  occurs when two or more of the keys of two distinct records 
have the  name value. Since the keys, in our case,  are  continuous variables, the 
probability of this  occurring  is  inflnitesimal. 

1585 



the  method described  in  Section 3.3. Recall that a  hypothesis  can be 
considered as an ordered  pair of a  model  (which we hypothesize gave rise 
to  the image  feature)  and  a pose transformation  (which we hypothesize 
will  transform  the model to  the correct  image  location so as to give 
rise to  the image  feature).  When  a  model  feature  and  an  image  feature 
match,  a hypothesis is generated as follows: the model which contains 
the  matching  feature is taken to be the hypothesized  model,  and the 
pose transformation  necessary  to  bring  the  matched  model  feature  into 
alignment  with the image  feature is designated to be  the  transformation 
part of the hypothesis.  The  details of this process  are  discussed  in 
Section 3.3. 

In  this section we have  discussed the problem of feature  matching, 
and we have  shown that  the feature  matching  problem is isomorphic to 
the problem of neighborhood  searching. We have  also  shown how to 
implement  neighborhood  searches,  and  hence  feature  matching,  quickly 
via k-d trees. In the following section, we discuss  our  approach to hy- 
pothesis  verification, and,  in  particular, we show how  k-d trees  may  also 
be used to some  advantage  there. 

3.3 Hypothesis Verification 
We now turn  to  the problem of hypothesis  verification.  Typically, 

verification of a  hypothesis  consists of a detailed  comparison of the model 
of the hypothesized  object at  the hypothesized  pose  with the image (or 
data derived  from the  image).  The  purpose of the comparison is to 
gather  evidence,  positive or negative, about  the hypothesis  in  question. 
The  result of the comparison is a  score  which rates  the  strength of the 
hypothesis. The score  depends  in  some way upon how  cioseiy what 
actually  appears  in  the image  matches  what is expected to  appear ac- 
cording to  the hypothesis. All the available  hypotheses  are  checked,  and 
the  strongest (according to some  criterion)  are  kept.  These  remaining 
hypotheses are  the algorithm’s  best guess as to which  objects appear in 
the image, and  at  what pose  they  appear. 

In  terms of the discussion in Section 3.2, hypotheses  are  those re- 
duced CPN  feature vectors  within  a  neighborhood of some image fea- 
ture  vector,  together  with some additional  information:  a  pointer to  the 
model of the object  which  contains the  feature,  and  the position of the 
feature  within  the model. The  model of the object is the  set of all of 
ita 6-8 contours  together  with  a  list of the poses of all CPN  features in 
the model. This information  allows the model’s  pose to be  transformed 
to  the pose indicated  by  the  feature  found  in  the  image  (and  there- 
fore allows the list of critical  points  from  the  model to be  transformed 
to their  expected  locations  in the image).  It  will  be  convenient in the 
rest of the discussion to speak of a  hypothesis as being the  contours 
and  critical  points of the model  after the pose transformation  which 
aligns the model feature  to  the image  feature  (where  the  model  feature 
matched  the image feature),  not  just  the  information necessary to effect 
the  transformation. Note that  the pose transformation of the  contours 
is nothing  more  than  the  addition of an offset to  the 6 values  in the 6-5 
representation of the  contours;  the offset is chosen to bring the matched 
CPN from  the model of the object into alignment  with the image  CPN. 

Our verification  scheme  bases its decision  about  whether to pass  or 
fail  a  hypothesis  upon  two  statistics:  a  fraction of critical  points  matched 
Qfp, and  a  fraction of boundary  matched Q b .  We chose  these  two statis- 
tics  since  past  experience showed them  to be  effective decision  variables 
for  a wide  variety of objects.  In  particular, Q, is effective for  objects 
possessing  many  critical  points; it heavily  weights  the  most  informative 
portions  (the  critical  point neighborhoods) of an object’s  contour. How- 
ever, the  statistic Qcp alone is not  adequate  for all kinds of objects.  Some 
objects,  such aa nails,  have  relatively few critical  points. In these  cases 
employing Qb in  conjuction  with Qcp is appropriate  since  these  objects 
often  have  only  one or two  critical  points  visible;  all  the  rest  may  be 
occluded  by other objects. In addition, Qcp becomes  very  sensitive to 
accidental  matches  when  there  are few critical  points  on  the  object. Any 
contour  segments  on  such  objects  are  roughly  equally  informative,  hence 
the presence of any  portions of the hypothesized  contour in  the image 
can  be  regarded aa evidence that  the hypothesized  object waa indeed 
present  in  the scene. 

We  now detail  the  computation of the  statistics. Q, is computed 
by  searching  a spatial neighborhood of each  critical  point  from  the  hy- 
pothesis  for  a  matching  critical  point  in  the  image,  and  incrementing 

a  count if one is found7.  In  order to match, a critical  point  from  the 
image  must  possess  roughly the same  orientation  and  the  same  sign of 
curvature as the hypothesized  critical  point it is being  matched  against. 
The  orientation of a critical  point is simply the value of 6 contour at  the 
critical  point  (recall that we consider the pose transformation to have 
already  taken  place). Qcp is given  by 

Qw = IepIMep~ (9) 

where Icp is the  number of model  critical  points  in the hypothesis  which 
were  found to  match  an image  critical  point,  and Mcp is the  total number 
of critical  points  in  the  model. In order to check quickly  whether there 
are  any  critical  points  in the image  matching a hypothesized  critical 
point, a second k-d tree is employed. For reasons that will  shortly be- 
come apparent, we shall  call  this k-d tree  the pose tree. The pose tree is 
built  during  the  feature  detection  stage  when  the  CPNs  are  being  found. 
The /cth CPN in  the image is assigned a key vector (Xk, yk, sin 6k,  cos ob),  

which we shall  call  the pose vector. The elements of the pose  vector  are 
defined as follows: the ordered  pair (Xk, yk) is the coordinates of the 
kth  critical  point  in  the  image,  and 6 k  is the slope  angle of the  contour 
at  the critical  point.  The  sine  and  cosine of 6k were  used in  place of 
6k itself to avoid branch  discontinuity  problems  associated  with  direct 
representation of slope (i.e. the ambiguity as to  the value of the  integer 
1 in  the  equation 6k = arctan(m) + 2rZ, where rn is the slope of the 
tangent  at  the  critical  point).  Each hypothesized  critical  point is ala0 

assigned a pose vector.  The pose tree is then used to perform  a  range 
query  to  retrieve  all image  critical  points  with  roughly the  same pose as 
the hypothesized  critical  point.  Let the hypothesized  critical  point  have 
the pose vector  (xh,  yh,  sin oh, cos Oh). The  range is then  defined by the 
&dimensional  interval  (xh -+ dx,yh =+? dy,sin6h f dsin8,cosBh f dcos6) 
The values of dx, dy, dcos 6, and  dsin 6 are  not  critical;  they  must be 
fairly  large to allow for  slight  differences  in  pose of the hypothesis and 
an  instance of the object in  the image. We used 4 pixels for dx and  dy, 
and .5 for  dsin6  and dcos6. If the l i t  returned by the range  query is not 
empty  then  the  count I,, is incremented.  This  process  continues  until 
all of the hypothesized  critical  points  are  checked,  and Q ,  may  then  be 
computed. 

We have  discussed the  computation of the  the first statistic which is 
based  on the  count of matched  critical  points. We  now explain how  we 
perform the  computation of the second statistic,  the  fraction of boundary 
matched.  The mechanics of performing the  boundary comparison  are 
quite  straightforward.  The  image  contours  are first drawn  onto  a  bitmap 
to allow easy  checking of the  spatial proximity of contours  (the  contours 
are  drawn  white  on  black). Following the  step of drawing the image 
contours, the contours of the  hypothesis  are  traced,  sample by  sample, 
creating  the  Cartesian  representation of the hypothesis. As before, the 
transformation  from  the  model  to  the  hypothesis is chosen so that  the 
pose of the hypothesized CPN feature is at  the  same pose as the image 
CPN feature  that  it matched.  At fixed intervals of arclength, da, a  probe 
is made  along  a  line  perpendicular to  the hypothesis  contour.  The pixel% 
on the probe  line  are  generated  by  Bressenham’s  line  algorithm 141 such 
that  the line  probed is perpendicular  to  the hypothesis  contour, and 
the pixels  in the  line  are checked up  to 2 pixels  on  either  side of the 
contour. If a  white  pixel  (which  corresponds to a  point  on one of the 
image  contours) is encountered  in the probe, the  fraction of boundary 
statistic, Qb, is incremented  by the  quantity ds/at, where at is the  total 
arclength of all  the  contours  making  up  the  hypothesis.  The  process 
continues until all of the  contours making  up the hypothesis  have  been 
probed. 

We have  discussed the  methods used to compute Q, and Q b ,  but 
we have  yet to explain how these  statistics  are used to make the decision 
to pass or fail  a  hypothesis. As would be  expected,  the  optimal  decision 
regions  depend  upon the object  set as well aa the degree of occlusion 
allowed. While we do  not find optimal decision  regions, we nevertheless 
desired to be  general  enough to get good performance  for  a  wide  variety 
of object  sets  and  degrees of occlusion.  In  particular,  a  hypothesis is 
passed if the ordered  pair (Qcp, Qb) falls  into the following region and is 
failed  otherwise: 

{(z,~): z > T l ,  y>Ta,  a n d @ x + ( l - f i ) y > % } .  (10) 

‘The matching we are discussing presently in reference to hypothesis veriflcation is 
distinct from the  feature matching  process discussed in Section 3.2 

1586 



The  three  thresholds  and are  chosen to give the  best performance  with 
the given  object  set. 

3.4 Summary of the Algorithm 
The previous  three  sections  have  dealt in  detail  with  the  heart of 

our algorithm.  In  this  section, we shall  summarize  the  algorithm  and 
analyse its complexity. 

Let N be the  number model  features,  let b be the average  number 
of critical  points  per  unit  arclength of contour  in  the model  set,  let P 
he the number of objects  in  the image, and  let Z be the  number of fea- 
tures  detected  in  the image. We shall  examine the offline computation 
first, ignoring the low level  operations of edge  detection  and  edge  link- 
ing.  The offline computation is composed of the following series of steps 
(which  have  been discussed in detail above):  critical  point  detection, 
neighborhood  extraction, K-L expansion,  basis  reduction,  projection of 
model  CPN’s, and building of the k-d  tree.  These  steps  have  complexity 
O ( N )  = O ( N / b ) ,  O ( N ) ,  O ( N ) ,  0(1), O ( N ) ,  and  O(N1ogN) respec- 
tively. Thus  the  entire procedure  has  complexity O(N1ogN). 

The online  portion of the algorithm is comprised of two  major  parts: 
&st a sequence of steps that are  executed  only once for  each  image that 
the  algorithm is asked to process,  and a second sequence of operations 
that form  a  loop. We have written  the online  portion of the  algorithm 
in Pascal-like  pseudocode to make it as clear as possible. 

Procedure ONLINE 
BEGIN 

DETECT-CRITICAL-POINTS; 
EXTRACT-NEIGHBORHOODS; 
POSE-TREE-CONSTRUCTION; 
PROJECT-CPNS; 

LOOP: GET-NEXT-FEATURE; 
NEIGHBORHOOD-SEARCH; 
VERIFY-HYPOTHESES; 
RENOVE-ASSICNED-FEATURES; 
IF  MORE-FEATURES  THEN LOOP ELSE DONE 

END 

The  function of the first four  steps  should be clear  from  their  names  and 
the preceding  discussion.  They  have  all  been  discussed  previously. The 
procedure DETECT-CRITICAL-POINTS has  complexity  O(Z/b) = O(Z); 
the procedure EXTRACT-NEIGHBORHOODS has  complexity  O(Z); the pro- 
cedure POSE-TREE-CONSTRUCTION has  complexity  O(Z1ogZ);  and the 
procedure PROJECT-CPNS has  complexity  O(Z). Thus,  the  total com- 
plexity of the  four  steps prior to  the loop is O(Z1ogZ). We now  ex- 
amine  the  loop body. The procedure GET-NEXT-FEATURE retrieves  the 
next  available  feature  from the set of features  remaining to be  pro- 
cessed. This procedure  has  complexity O(1). The  next step  in  the loop 
is NEIGHBORHOOD-SEARCH. Recall that  this  procedure  retrieves all image 
features  within  a neighborhood of the image  feature  that was obtained 
by GET-NEXT-FEATURE. This procedure  has  complexity O(1og N). Fol- 
lowing NEIGHBORHOOD-SEARCH ia VERIFY-HYPOTHESES. As described in 
Section 3.3, this procedure  decides  whether the hypotheses  generated 
by NEIGHBORHOOD-SEARCH are  good  enough to be  considered  final  hy- 
potheses. This procedure is complexity O(1ogZ) since it queries the 
pose tree.  Next, the procedure REMOVE-ASSIGNED-FEATURES removes 
from the  set of image  features  remaining to be  processed  those  features 
that have  been  determined  by the hypothesis  verification  stage to be- 
long to  a final  hypothesis.  This is an 0(1) step.  Finally, a test  based 
on MORE-FEATURES is made. MORE-FEATURES returns  TRUE if there  are 
additional image  features to be  processed by the algorithm  and FALSE 
otherwize. This is also an O(1) step.  Thus,  the  complexity of the loop 
body is O(1og Z + log N). The  loop will  be  executed at  most I times 
(usually  considerably  fewer than I times). This leads a cumulative com- 
plexity of O(I1ogI + I log N) for  the loop.  Combining  this  with the 
complexity of the previous  four  steps  yields O(ZlogZ+ Zlog N) as the 
complexity of the  entire online  recognition  procedure. 
4 Experimental Results 

We now present  some of the  experimental  results  which we have col- 
lected  from  running our recognition  algorithm on  a  number of images. 

All  images  were  obtained  from a CCD  camera at  256 X 256 resolution 
from  a CCD camera.  Each  pixel  was  digitized to 8 bits of gray  scale. We 
then preprocessed all images  by  applying  a Canny edge detector 161, and 
we then applied a simple  linking  algorithm to  trace  the contours.  After 
the linking step, we resampled the  contours so that  both  the  Cartesian 
and  the 6-s contours  were  sampled at uniform  intervals of arclength. To 
accomplish  this, we used an  operation  developed  in [15] which  simulta- 
neously  smoothes  the  contours,  resamples  them,  and  generates  both  the 
resampled  Cartesian and 8-s contours of the image. 

4.1 Offline Processing 
The offline processing  needs to be  performed  only  once  for  each die- 

tinct set of objects that  the  system is required to work  on. After  a 
training  image  was  preprocessed as described  above, the next step  was 
the assignment of contours  to object  labels (our training  images  typically 
contain  several  objects). The  CPN  features of the model  contours  were 
then  extracted using  a  simple  one-dimensional  derivative of a  Gaussian 
edge  detector as described  in  Section 3.1. We then applied the K-L ex- 
pansion to  the  CPN  features  to  obtain  the  reduced basis,  and the model 
CPN’s  were  then  projected onto  the subspace  spanned  by the  reduced 
basis,  also per Section 3.1. The projections of the CPN’s  were  stored  for 
use by the online  recognition  procedure. 

We ran  the  algorithm  on  two  sets of objects:  a  set of ten  puzzle 
pieces and a set of eleven  switch  partss. The puzzle pieces are  a  set of 
truly 2-d objects  which  provide  a  good  benchmark. The switch parts 
are  not 2-d parts, however. We allow only the  stable  positions of the 
switch parts  to  occur  in  an image. By treating each view of a distinct 
stable position as a 2-d object, we were  able to use our 2-d algorithm to 
recognize the 3-d  switch  parts. 

All of the  experiments were conducted  using an Apollo  series 660 
color  workstation. Run  times  on  this machine are roughly  equivalent to 
run  times  on  a VAX 11/750. 
4.2 Online Processing and Results 

In  this  section we experimentally  assess  the  accuracy,  robustness, 
and efficiency of our algorithm. We give three means of characterizing 
the accuracy of our algorithm. 

1. A  plot of the percentage of the objects  which the  algorithm rec- 
ognized  correctly (as determined by a  human  observer)  versus the 
percentage of the object’s  contour  which is exposed. 

2. The  number of false  alarms  generated  in  each  image.  This is the 
number of times that  the algorithm  predicts an object to be  in the 
image  which is not  actually  there  (again  determined  by  a  human 
observer). 

3. Figures of some of images before the recognition  procedure is run, 
and figurea of the fir& image  with  the  final  hypotheses of the al- 
gorithm  superimposed  in  differing  gray  tones.  This  yields  a rea- 
sonable,  although  qualitative,  measure of the positional  accuracy 
of our algorithm. 

To  characterize  the  robustness of our algorithm, we rely  on the  fact  that 
we have run  a sizable  number of experiments  under  widely  differing 
conditions,  namely,  two  object  sets,  several  lighting  setups,  and  many 
object  placements. In  addition,  the  plot of the  percentage of objects 
recognized  correctly  versus the percentage of the object’s  contour  visi- 
ble  makes  explicit the algorithm’s  robustness with respect to occlusion. 
Finally, to characterize  the  algorithm’s efficiency, we give (in  addition 
to  the complexity)  average runtime of the  algorithm  from  the  feature 
detection  step onward for each  object set, ie. we do  not include the 
low level  operations of edge  detection  and  edge  linking  in  the  runtime 
figures. 

After the preprocessing  described  earlier in  this section, the  onl ie  

4.2.1 Puzzle Pieces 
portion of our  algorithm proceeds as described in Section 3.4. 

Figure 6 shows the result of running our algorithm  on  an  image of 
overlapping  puzzle pieces. The left  hand  side of each  figure is a picture 

“These switch parts were provided by the Air Force. They are  nome of the same 
parts  that  Cowan d d. (61 used to tent ACRONYM. 

1587 



Figure 6: Above are the  results of running  the  algorithm on an image of puzzle pieces. On  the 
left  are the  contours of an image  (the  contours  are  white).  On the right  are  images  showing the 
image on  the left  superimposed  with filled gray  tone  images of the final  hypotheses. 

of the puzzle piece contours that were  extracted  from  the  image.  On  the 
right, filled in differing  shades of gray, are  the algorithm’s  final  hypothe- 
ses as to  the identity  and  location of the various  puzzle pieces in  the 
image. We ran  the algorithm  on  a total of six different  images  contain- 
ing  puzzle pieces. The  example  shown  in  Figure 6 was  chosen as typical. 
The  algorithm  generated no false  alarms  for  any of the images  contain- 
ing  puzzle pieces. Figure 7 summarizes the algorithm’s  performance 

X Data 

%of  Puzzle Pice Boundary Visible 

Figure 7: Percent of Objects Recognized Correctly vs. Percent of Object 
Boundary  Visible:  Jigsaw  Puzzle  Pieces. 

be  correct with  near certainty. 
The  four  variables  which  determine the decision  region specified by 

(10) for the set of puzele parts  are as follows: = 0, TI = .3, T- = 0,  
and T3 = 0. In other  words,  for this  part  set, only Qcp is used to decide 
whether  or  not  to keep  a  hypothesis.  The  reason  for this is simply 
that  the puzzle pieces have  many  critical  points and, as discussed in 
Section 3.3, for  such  objects, Qcp is really the on.ly decision  variable 
needed. 

The  average  time to finish an  entire image  from the  stage of feature 
detection  onward  was 5.3 seconds  for  test  images  containing  ten  puszle 
pieces  each.  Humans  who  are  familiar  with the puzzle pieces generally 
took at  least 20 seconds to recognize all the puzzle  pieces they  could 
from an image. However, they  could  usually  recognize  more pieces  (i.e. 
humans  do  better  with less boundery  visible  than  the  algorithm).  They 
also averaged  more  false  alarms  per  image than  the  algorithm  did. 

4.2.2 Switch Parts 

Figure 8 shows the  results of running  our  algorithm on two images 
of overlapping  switch  parts.  Experiments  were  conducted on a  total of 
fourteen  images  conating  overlapping  switch ~ a r t s .  As in  the case of 

Figure 8: Above are  the  results of running  the algorithm  on an image of the switch  parts.  This 
figure is exactly  analogous to Figure 6. 

and,  in  addition,  makes  explicit  its  robustness  with  respect to occlu- 
sion. Shown  there is a  plot of the  percentage of puzzle pieces correctly 
recognized  versus the percentage of the  boundary of the puzzle pieces 
exposed.  Figure 7 shows that any  puzzle piece with more than 50% of 
its  boundary exposed  will,  with  high  likelihood,  be  recognized  correctly. 
For  those  pieces  with less than 50% of their  boundaries  exposed, the 
algorithm  sometimes  has  no  hypothesis  good  enough  to  consider as a 
final  hypothesis. However, the  fact  that  the  number of false  alarms is 
so small shows that if the  algorithm does  have  a  final  hypothesis,  it  will 

the  puzzle  pieces, the images were  chosen as typical  examples of the 
algorithm’s  performance.  When  processing  four of the  images, a single 
false alarm was  generated. The  other  ten images  had no false  alarms. 
Figure 9 gives a  plot of the percentage of the switch parts  that were 
recognized  correctly  versus the percentage of part  boundary visible. As 
can  be  seen  from both  Figure 8 and  Figure 9, the  algorithm  had  more 
difficulty  recognizing the switch parts  than  it did  recognizing the puzsle 
pieces. 

The decision  region  for the switch parts is given by (10) and  the 

1588 



X Dala 

- Fined Curve 

e! so+ \ 

% of Switch Part Boundarv Visible 

Figure 9 Percent of Objects  Recognized  Correctly vs. Percent  of  Object 
Boundary  Visible:  Switch Parts 

following list of parameter values: TI = 3 ,  T2 = 3 ,  Ts = .4, p = .O. 
The  runtime of the algorithm on images  containing the switch parts 

averaged 4.8 seconds,  again  from the  step of feature  detection  onward.. 

6 Conclusions 
In  this  paper, we have  presented  a new procedure  for 2-d partially 

visible  object  recognition.  Neigborhoods of critical  points  were  employed 
as the  fundamental  features.  The  heart of the  method was the use of a 
k-d tree  for  fast  feature  matching.  The use of the k-d tree  was  made fea- 
sible  by  applying the  Karhunen-Lohe expansion to  the  feature  vectors 
to reduce  the  data  in  them by an order of magnitude.  Experiments  were 
conducted on  two  sets of real  objects,  jigsaw  puzzle pieces and  switch 
parts, to get an idea of the accuracy,  robustness,  and efficiency of our 
algorithm. 

The  results of the  experiments we have  conducted and  our experi- 
ence  developing the  algorithm  has led to  an interesting  conclusion.  In 
a few of the images of the switch parts,  the  spring was  found  in  the 
image  shifted  one or more  cycles  from the correct  position.  This is not 
surprising  since all of the  critical  points along the side of the  spring  are 
very  similar and  generate  many false  hypotheses which place the  spring 
shifted  from  where it should be. Our  algorithm  occasionally  chooses  one 
of the false  hypotheses  because it may just  happen  to adjoin  a  section of 
boundary  from  another  part,  thus making Q b  large  enough to pass the 
false  hypothesis over the  correct one. In fact,  this scenario  also  leads to 
most of the false  alarms  in  the  experiments. Interestingly, all of these 
false  alarms as well as most of the misplacements of the  spring could 
easily be eliminated if some  simple  segmentation  information  was em- 
ployed in  addition  to  just  the  shape of the edge  contours. In particular, 
if the background  region  was  known,  then  these  problems  could  often 
be eliminated  since,  in  many  cases,  such  false  (or  poor)  hypotheses will 
have  large  sections of their  contour  deep  in  background. If this infor- 
mation  were  available, it could  be  used to weaken those  hypotheses, 
making  the  correct one  more  likely to be  chosen as a final  hypothesis. 
We believe that employing  segmentation  information  will  be  necessary 
to solve the problem in 3-d of partially  visible  object  recognition. Our 
algorithm  currently uses no  information as to  what is background and 
what is not. Using these  obsenrations, we are  currently  working  to ex- 
tend  the  method  presented here to  the domain of 3-d partially  visible 
objects. 

References 

I11 

I21 

[31 

141 

F. Attneave,  “Some  Informational  Aspects of Visual  Perception,” 
Psychological  Review, Vol. 61,  pp. 183-193,  1954. 

J. L. Bentley  and J. H. Friedman, “Data  Structures for  Range 
Searching,” Computing  Surveys, Vol. 11, No. 4, December  1979. 

R. C.  Bolles and R. A. Cain,  “Recognizing and Locating  Partially 
Visible  Objects: The Local-Feature-Focus  Method,”  in Rolot  Vi- 
sion, A. Pugh, Ed., 1984. 

J. E. Bressenham,  “Algorithm  for  Computer  Control of Digital 
Plotters,” IBM  Syst.  Journal, Vol. 4, No. 1, pp. 25-30,  1965. 

C. K. Cowan, D. M. Chelberg, and H. S. Lim,  “ACRONYM  Model 
Based Vision  in the Intelligent Task Automation  Project,” First 
Conjerence on AIA, pp. 176-183, 1984. 

J. F. Canny,  “Finding  Edges  and Lines in  Images,” Master’s  Thesis, 
MIT, 1983. 

H. fieeman,  “Shape Description  Via the Use  of Critical  Points,” 
IEEE  Conference on Pattern  Recognition and Image  Processing, 
pp.  108-174, June 1977. 

T. F. Knoll and  R. C.  Jain,  ”Recognizing  Partially  Visible  Objects 
Using Feature  Indexed  Hypotheses”, IEEE  Journal of Robotics and 
Automation, vol. RA-2, No. 1, pp. 3-13, March  1986. 

J. Mattill,  “The  Bin of Parts Problem and  the Ice-Box  Puzzle,’ 
Technology Review, Vol. 78, No. 7, pp. 18-19, June  1976. 

J. W. McKee and J. K. Aggarwal,  “Computer  Recognition of Par- 
tial Views of Curved  Objects,” IEEE Transactions o n  Computers, 
V O ~ .  C-26, NO. 8, pp.  790-800, August 1977. 

W. A. Perkins,  “Simplified  Model-based Part Locator,” Proceedings 
of  the 5th  International  Conference on Pattern Recognition, pp. 
260-263, December 1980. 

A. Rosenfeld and A.  C. Kak, Digital  Picture  Processing, New York/ 
San  Francisco/London:  Academic  Press,  pp. 109-123, 1976. 

J. L. Turney, T. N. Mudge, and R. A. Vole,  ‘Recognizing Partially 
Occluded Parts,” IEEE  Transactions on Pattern  Analysis and Ma- 
chine  Intelligence, Vol. PAMI-7, No. 4,  July  1985,  pp. 410-421. 

J. L. Turney, T. N. Mudge, and R. A. Vole, “Solving the Bin of 
Parts Problem,” Vision 86 Conference  Proceedings, pp.  4-21 - 4- 
38,  1986. 

J. L. Turney,  “Recognition of Partially  Occluded  Parts”, PhD. dis- 
sertation,  University  of  Michigan, 1986. 

K. R.  Yam, W. N. Martin,  and J. K. Aggarwal, ‘Analysis of Scenes 
Containing  Several  Occluding  Curvilinear  Objects,”  University of 
Texas at  Austin  Technical  Report  TR-135,  February,  1980. 

1589 


