Two-Dimensional Partially Visible Object Recognition Using

Efficient Multidimensional Range Queries

Paul G. Gottschalk

Jerry L. Turney

1

Trevor N. Mudge

Robotics Research Laboratory, EECS Department, University of Michigan, Ann Arbor, MI, 48109

Abstract

An important task in computer vision i8 the recognition of
partially visible two-dimensional objects in a gray scale image.
Recent works addressing this problem have atiempted to match
spatially local features from the image to features generated by
models of the objects. However, many algorithms are less efficient
than is possible. This is due primarily to insufficient attention be-
ing paid to the issues of reducing the data in features and feature
matching. In this paper we discuss an algorithm that addresses
both of these problems. Our algorithm uses the local shape of
contour segments near critical points, represented in slope angle-
arclength space (6-s space), as the fundamenta] feature vectors.
These fundamental feature vectors are further processed by pro-
jecting them onto a subspace of §-s space that is obtained by
applying the Karhunen-Lodve expansion to all critical points in
the model set to obtain the final feature vectors. This allows
the data needed to store the features to be reduced, while re-
taining nearly all their recognitive information. The resultant
set of feature vectors from the image are matched to the model
set using multidimensional range queries to a database of model
feature vectors. The database is implemented using an efficient
data-structure called a k-d tree. The entire recognition proce-
dure for one image has complexity O{Ilog I + Ilog N), where I
is the number of features in the image, and N is the number
of model features. Experimental results showing our algorithm’s
performance on a number of test images are presented.

1 Introduction

A problem which has received considerable attention in the computer
vision literature is that of recognizing two-dimensional (2-d) partially
visible objects in a gray scale image. In addition to being an important
problem whose solution has many practical applications, it is an impor-
tant step toward the solution of the more difficult problem of recognizing
three-dimensional (3-d) partially visible objects in an image. The prob-
lem of recognition of partially visible objects is sometimes called the bin
of parts problem after the way that parts are commonly presented for
batch assembly in industry: piled in a bin. The general bin of parts
problem (with no constraints on the objects that may appear in scenes
except that they be rigid) has been described as the most difficult prob-
lem in automatic assembly {9]. In this paper, we present a solution to the
bin of parts problem where the objects are 2-d or have a small number
of aspects (and hence are essentially 2-d).

There are three very general goals which should be common to all
object recognition systems: accuracy, robustness, and efficiency. The 2-
d partially visible object recognition algorithm presented here is highly
accurate, robust, and efficient. In addition to being a novel approach to
the problem of 2-d partially visible object recognition, we will argue that
our algorithm achieves the goals of accuracy, robustness, and efficiency
to a greater extent than many previous algorithms. For a thorough re-
view of previous work relating to 2-d object recognition, the reader is
referred to [15] and [8]. While no work we know of combines all of the
elements of our present work, a number of previous works have one or
more similar aspects. Freeman (7], like us, uses critical points as his
fundamental features (critical points are discussed in detail later). He
augments this set with other types of geometrical features, which we
do not use, such as end points, intersections, and points of tangency.

1This work was supported in part by AFOSR grant 080012 and ARO grant
DAAG29-84-K-0070

CH2413-3/87/0000/1582801.00 © 1987 IEEE

Perkins [11}, Yam et al. [16], Mckee et al. [10], and Turney {15] have all
employed the slope angle-arclength representation of edges (discussed
later). The features and the matching strategies used in these works
differs considerably from ours, however. Bolles and Cain [3) have used
highly informative features to advantage, as has Turney [15]. A por-
tion of our hypothesis verification algorithm is similar to the hypothesis
verification schemes in [3] and [8].

2 Two-Dimensional Object Recognition

Conceptually, the simplest strategy for recognizing 2-d objects in an
image is to attempt to match the model of each possible object at every
position and orientation in the image. In two-dimensions, this approach
is computationally feasible though very slow. In order to speed up the
recognition procedure, most object recognition techniques use features
of the objects. Typically the recognition procedure attempts to match
the features from the models of the objects to features in the image. A
feature is a processed version of the image data which has the desirable

Offline Preprocessing
" LowLevel
frago Operations
Madsl Feature Feature Detaction
Generalion InImage

Modal Feature
Organization

Arovis indicate dataflow.

Qnline Reogg_rﬁon Processing

Fealyre Maiching
o
Genaralion of Hypatheses.

erification
of
Hypotheses
Final Hypoihesés

Figure 1: An Abstract View of the Recognition Process

property of greatly reducing the data needed to represent the image
adequately. At the same time, extracting a feature should sacrifice as
little of the recognitive information in the image as possible. It is desired
(and often true) that the time taken to extract the features from the
image is more than made up by the reduced time needed to perform
recognition. Generally, the extraction of features is a relatively low-level
operation and can often be done very quickly using special hardware.
In the case where the recognition of partially visible objects is required,
it is necessary that spatially local, or combinations of spatially local
features be used. Any global features would be too prone to distortion
if an object in the scene was occluded by another.

Figure 1 shows the general strategy which many recognition proce-
dures use. Examining the online half of Figure 1, the input image may
be processed to extract higher level representations such as boundary
segments, regions, or (as in our case) edge contours. These represen-
tations may then be further processed to detect features. The features
may be represented by a set of numbers, often called a feature vector.
The image feature vectors are then compared to all of the model feature
vectors. Those model feature vectors that are close enough to an image
feature vector, according to some metric, are hypothesized to exist in
the image at the position and orientation given by the image feature

1582

vector?. These initial hypotheses must then be verified or rejected. The
hypotheses that pass the final verification phase are those which are
most likely to hypothesize the correct object appearing at the correct
pose in the image.

The offline preprocessing branch of Figure 1 starts with a model
generation phase. Models are typically generated by processing a set of
training images or by a CAD system [13]. Features are then extracted
from the models in the same way as in the feature detection phase in
the recognition branch of the figure. As a final step in offline processing,
the model features may be organized into a data structure which can
then be accessed during the feature matching phase of the recognition
procedure.

A very important aspect of the recognition process is the relationship
between the offiine step of model feature organization and the online step
of feature matching (see Figure 1}. A very powerful means of speeding
up the feature matching stage is available through the organization of
the data structure that the model feature organization stage creates;
this data structure should be organized for the fastest possible retrieval
of the matching model features. Some algorithms have taken a step in
this direction. For example, Turney [14] sorts the set of model features
by their saliency (saliency formalizes the notion of informativeness of 2-d
features). However, the matching process is still a linear search. Knoll
and Jain [8] choose a set of features from the model so as to reduce
overall recognition time. However, the improvement that this strategy
can yield is limited since again the matching process is a linear search.

It is possible to organize the set of model features such that the
feature matching is much more efficient than a linear search. To this end,
it is useful to view the operation of retrieving those model feature vectors
which match a feature vector from the image as an an abstract data type:
given a K-dimensional vector, return a list of all K-dimensional vectors
from a set of such vectors that lie within a K-dimensional neighborhood
(as defined by some distance metric) of the original vector. A number of
data structures have been proposed in the database literature that allow
this retrieval to be done in average case O(log N) time, where N is the
cardinality of the set of vectors to be searched [2]. This is in contrast
with the O(N) time of a linear search. In Section 8, we discuss how one
of these data structures, a k-d tree, can be used to do very fast feature
matching.

3 A New Two-Dimensional Object Recog-
nition Algorithm

3.1 Selection and Computation of Feature Vectors

Our algorithm recognizes objects entirely by the shape of contours.
A contour consists of edge points which have been linked together into
a single edge segment and stored in a data structure, typically a linked
list. We chose to represent the contours in slope angle-arclength space
(6-s space hereafter) as opposed to a Cartesian representation. In the
f-s representation of a contour, the ordinate is the slope angle at the
point of interest on the contour (¢), while the abscissa is the arclength
(s) measured from some point of reference on the contour to the point
of interest.

We have a number of reasons for choosing to represent contours in
§-3 space. One fundamental consideration is that the §-s representa-
tion simplifies the construction of features that are invariant to image
translation and rotation. Translation invariance is automatic, since all
quantities are measured from a point of reference on the contour. As
for rotation invariance, note that the rotation of a contour in Cartesian
space corresponds to a simple shift in the ordinate (f) of the f-s rep-
resentation. To normalize contours with respect to rotation, an offset

2 A hypothesis, as we shall use the term, consists of two parts: first, a conjecture
as to the identity of an object in the image and second, a conjecture ag to the
pose of the object in the image. In more formal terms, {and the way in which we
shall use the word) a hypothesis is an ordered pair (M, T) where M is a model
which is hypothesized to appear in the image, and T is a transformation which
is applied to the model in order to place it at the hypothesized pose. In our case
the transformation T is always chosen so that the pose of the model feature, Fr,,
which matches an image feature, Fy, are as close as possible, according to some
metric. We shall, in order to facilitate the discussion, often speak of a hypothesis
to be the model M after applying T to it.

1583

S

s

| AP

l‘s
Figure 2: Shown above is the puszle piece contour represented in both
Cartesian space (top) and f-s space (bottom). Marked in both curves
are the location of critical points. Positive extrema of curvature are
marked with circles, and negative extrema of curvature are marked with
squares. As mentioned in the text, the critical points are the edge points

marked by a one-dimensional derivative of a Gaussian edge detector ap-
plied to the §-s representation of the contour.

Cartesian CPN Features 0-S CPN Features

T RS
py S

Figure 3: Above on the left are several typical puzzle piece CPN fea-
tures in their Cartesian representation, and above on the right are the
same features represented in -3 space. Note the similarity of the 4-s
representations.

is added to # so that the reference point on the contour is some stan-
dard value, such as gero. If this is done, then the #-s representations
of rotated versions of some Cartesian contour are the same. Other ad-
vantages of the -3 representation, such as singlevaluedness and the ease
with which our features can be extracted, contribute to the efficiency of
the algorithm at various stages. These aspects of the 0-s representation
will be explained in more detail as the pertinent portions of our algo-
rithm are discussed. See [13] for a more detailed exposition of the 6-s
representation ayd its properties.

The choice of the 0-3 representation for contours is only an interme-
diate step to the extraction of the final feature vectors in our algorithm.
Since we have as a goal the recognition of partially visible objects, we
must use spatially Jocal or a combination of spatially local features. We
have chosen our fundamental geometric features to be neighborhoods of
critical points, i.e. fixed length portions of contours with critical points
at their centers. A critical point is defined to be a point on the contour
of an object where there is an extrema of curvature. Attueave [1] and
Turney [13] have argued that contour segments which contain critical
points have high information content relative to those contour segments
comprising an object which do not contain any critical points. An addi-
tional advantage that critical points possess is that they are easily and
quickly extracted by the application of a one-dimensional edge opera~
tor to the 0-s representation of the contours (by definition, a critical
point is a point of rapidly changing slope on the §-s curve representing
a contour). It is for the reasons given above that we have chosen to use

critical point neighborhoods as the fundamental geometric features in
this work.

Figure 2 shows a contour whose critical points have been marked in
its Cartesian representation as well as its §-s representation. The critical
points in the figure are the edge points marked by a one-dimensional
derivative of 2 Gaussian edge detector.

Critical point neighborhood {CPN) features, while being much more
informative on average than other segments of a set of contours, are
nevertheless not a very efficient encoding of the important recognitive
information. Examination of Figure 3 reveals that many CPN’s look
similar. This indicates that samples in a contour of a CPN feature are
highly correlated with each other, i.e., it is possible to predict with high
accuracy what the value of a sample will be given the values of some
other samples on the CPN’s contour. The Karhunen-Lot¢ve (K-L) ex-
pansion, a standard data compression technique in signal processing,
takes advantage of highly correlated data. Rosenfeld and Kak [12] de-
scribe how the K-L expansion can be employed with success to compress
picture data. We use it in the present work to reduce the data needed
to represent the CPN features described above.

The form of the K-L expansion we shall use applies to real random
vectors. Therefore, in order to apply it to CPN features, we first must
view them as vectors. The ¢-s representation of CPN features is a
single valued function of one variable. In practice the representation is
discretized and contains a finite number of samples. Each sample can be
considered to be a component of a real vector of some dimension, say N.
The set of CPN features can now be viewed as the result of trials of an
underlying real random vector X of dimension N. Let R = E{X X*] be
the auto-correlation matrix of X. Since R is non-negative definite, there
exists a set of orthonormal eigenvectors and associated eigenvalues of
R, ék and A 2> O respectively, where £ =1,..., N. Define the random
variables Y, = g; X. Without loss of generality, we may assume that
the eigenvectors ¢, are ordered so that A; > J3 > ... > Ay. Examining
the cross correllations of the Yy, we find

E[%:¥i] = E[(¢: X)(¢! X)| = E{(¢, X) (6! X)'] =
SLEIX X4, = $.R$, = Mibi (1)

where 8y is the Kronecker delta function. This implies that for k # I,
Y% and Y] are orthogonal random variables. If X is zero mean, then

E[Yy| = E[¢, X| = ¢, E|X] =0. 2
Therefore, when X is zero mean, we have from (1) and (2) that
B{Yi¥i) =0 = BVl BIYi], & %L (3)

This implies that when k # [, ¥} and Y} are uncorrelated in addition to
being orthogonal. When k = I, we get that

E[Y?) = Var(Ys) =). (4)

With the ¢, as the K-L basis, and the random variables Yi as the
coefficients, we arrive at the Karhunen-Lo&ve expansion of X:

N
X=) Yip,. (5)
k=1

The mathematics in the preceding paragraph do not clearly illumi-
nate the reasons that the K-L expansion works well as a data com-
pression technique. Geometrically, the K-L expansion chooses a special
basis in the N-dimensional vector space in which X is defined. This
basis has the following property: the basis vector ¢) defines the direc-
tion in which X has the greatest variance {i.e. ¥;, the projection of
X in the ¢ direction, has the maximum variance); the second basis
vector ¢, defines the direction in the subspace perpendicular to ¢) in
which)_(2 has the greatest variance, and so on until all dimensions are
defined. Therefore, the K-L expansion chooses a basis which, when X
is represented in terms of it, will concentrate the total variance of X
into its lower numbered components. A subspace whose basis vectors
Q,F are associated with those Yz having small variance may be ignored
with negligible effect upon the probabilistic properties of X. The result

1584

of this is that the original feature vectors can be projected onto a space
of smaller (often considerably smaller) dimension and still retain most
of their information.

Before applying the K-L expansion to compress the data needed to
represent the CPN features, it is necessary to make the data zero mean,
gince this decorrelates the Yi. Let § = {Fi, 2 = 1,...,V} be the
set of all feature vectors in the object set (extracted from models or
training images), where V is the number of CPN features found in the
training images. The set of zero mean feature vectors derived from S is
T={F;=F,~M,i=1,...,V}, where M is the sample mean of §.
R is estimated from T" by the formula

R=1V Y B E,. (©
k=1

Using the estimate® of R, the K-L expansion formulae can then be
applied to obtain estimates of the basis vectors @, as well as estimates
of the variances Mg of the uncorrelated random variables Yi. The data
reduction is effected by retaining only those basis vectors ¢ associated
with the Y, having the largest variances. Define the total variance of
X, 0z, as E[_)f_)ﬂ Note alse that o, = Z:’:l Ak, since the ¢, are an
orthonormal set. The number of gk’s retained, L, is determined by the
fraction of o, we wish to retaint. The reduced feature vector, R, of any
CPN feature F can then be computed by the formula B = P(F — M),
where P is the L X N matrix whose rows are the L retained ék ordered
such that the ¢, with the largest associated variance appears at the top,
the ¢ with the second largest variance appears second from the top,
and so on to the bottom where the last retained §, (associated with the
smallest variance) appears.

Figure 4 shows the K-L basis vectors, ¢, , which have been computed
using the entire set of CPN features from the training set, the associated
variances of the Yg, and the reduced feature vectors of the sample of
CPN features. In our case, 95% of the total variance was retained; only

Basis in 6-8 % of Variance Basis in Cartesian
— 60.2 P
o 29.7 N
pavde 6.5 T
N~ 11 o
— N 1.1 —

Figure 4; Above on the left are the basis vectors which result from ap-
plying the K-L expansion to all of the CPN features in the model set (in
this case, a set of ten puzzle pieces) are represented in 8-s space. In the
middle of the figure is the percentage of the total variance associated
with each basis vector. At the far right are the Cartesian representa-
tions of the basis vectors.

5 dimensions out of an initial total of 45 were necessary to achieve the
95% variance figure. This is a reduction in data by nearly an order of
magnitude. Figure 5 shows the projections of some typical CPN features
onto the reduced basis obtained from applying the K-L expansion to the
CPN’s of a set of puzzle piece contours.

S3We shall use the same symbols for both quantities and their estimates.

4The fraction is a design parameter. Adjusting the fraction allows data reduction
to be traded off for informativeness. If the fraction ia very close to 100%, there
will be less data reduction but the reduced features will represent the original
features more closely. On the other hand, a lower fraction will increase the data
reduction at the expense of a less perfect representation of the original features.
As discussed in the text, a fraction quite close to 100% (e.g. 95%) still yields a
large data reduction.

CPN's in Cartesian CPN'sin ©-$ Projection onto 5-d Subspace

(3.7, 26, -1.7, 0.1, 0.2)

(-3.5, 0.3, 3.4, 1.4, 0.6)

(5.4, 3.8, 0.2, 0.5, 0.3)

(4.7, 3.9, 0.0, 0.3, 0.0)

C RS
pNy S

(-2.8, -3.0, 1.3, 0.2, 0.0)

Figure 5: On the left are shown some typical puzzle piece CPN features
in Cartesian space. In the middle are their 6-s representations. On the
right are their projections onto the reduced basis made up of the five
vectors shown on the left in Figure 4.

3.2 Feature matching

The step following the computation of the reduced feature vectors
from the image is that of matching those vectors to the reduced feature
vectors computed from the training images. Since, even for small object
set guch as those used in our experiments, there are several hundred
reduced model feature vectors to be compared with each reduced image
feature vector, it is crucial that the feature matching method be as
efficient as possible.

It was mentioned briefly in Section 1 that the problem of matching
can be stated as a problem in near neighbor retrieval from a set: given a
set of K-dimensional vectors, retrieve all those vectors in the set which
fall within a K-dimensional neighborhood of another vector. We shall
henceforth call this operation a neighborhood search®. The definition
of neighborhood includes the choice of a distance metric. One general
class of metrics is defined by

K i/n
D,(a,b) = [E Ja; ~ b.-]"] Q)

=1

where K is the dimensionality of the vectors g and b, a; and ¥; are the
components of ¢ and b respectively, and n is the order of the metric. A
special case of (7), the Do, metric, or Chebeychev metric, is obtained
a8 n — oo and can also be written as

D (a,8) = m's’i»xiai — bl (3

A 6 neighborhood of a vector g with respect to Dy, denoted N(6,s,n),
is defined as the set of all vectors y such that D, (r,s) < §. Furthermore,
for later use, we note that the inequality Do, (e,b) < Dn(g,b), V a,b €
RX jmplies that N (6, s, 00) contains N(§,s,n) for all finite n.

A neighborhood search using the Chebeychev metric can be reduced
to a special case of a problem in database theory, namely that of mul-
tikey range searching. The problem of range searching can be stated as
follows: given a set of records with K real valued keys, retrieve those
records where the keys of all of the retrieved records fall within a range
specified for each key. We can use range searching to retrieve all vectors
of a set that are contained in N (4,3, 00) by letting the each component
of the vectors be a key and choosing the ranges for each key to be the
intervals [s; ~ 8, s; + 6], (¢ = 1,..., K), where the s; are the components
of g.

There are a number of data structures known that may be used to
perform the range searching operation [2]. The k-d tree was chosen for

®Note that there are two distinct ways in which we have used the word neighbor-
hood. The most recent usage in the phrase “neighborhood search” is 2 common
usage in mathematical analysis. It refers to all vectors in a vector space which
are within some distance of another vector. The metric, or distance measure, is
ours to define as long as it obeys some basic rules. The other, quite different,
usage occurs in the phrase “critical point neighborhood”. This usage refers to an
interval of arclength in the 6-s representation of a contour which has a critical
point at its center. The context should make the usage clear.

1585

our purposes, since it has the best average case query time, preprocessing
time, and space requirements in addition to being the easiest to code.

A k-d tree is a binary tree with two pieces of additional information
stored at each node, a key identifier and a discrimination value. The tree
is organized such that at each node all data stored in the left subtree has
the key indicated by the node’s key identifier less than the discrimination
value while the data on the right has the key indicated by the node’s key
identifier greater than the discrimination value stored at the node. All
data in a k-d tree is stored in its leaves. The leaves are lists of less than
some predetermined length which contain data satisfying the constraints
of all of the ancestor nodes.

In our application, the k-d tree need not support random insertions
and. deletions, i.e. all of the data in the tree is known a priori. Under
these conditions, it is possible to balance the k-d tree during its con-
struction unless the data is highly degenerate®. This is done by first
computing the variance of each key over all records. The key with the
largest variance is selected as the root node’s discrimination key {orga-
nizing the tree in this way makes queries more efficient [2]). Denote this
key as a. The median of a is found and this value becomes the root
node’s discrimination value. The records are then divided into sets:
those where « is less than or equal to the discrimination value (these
records are stored in the left subtree), and those where « is greater than
the discrimination value (these records are stored in the right subtree).
The entire procedure is repeated recursively on each set to create the
children of the root node. The procedure terminates when there are less
than a given number, say J (six in our case), records left in the set. J
is chosen such that the cost of a query is minimized. In the case where
there is less than J records left in the set, a leaf, which is a linked list
of less than J elements, is formed.

Searching a k-d tree is a simple recursive procedure. A range is
specified for each key; the task is to retrieve all records where the value
of every key falls into the corresponding range for that key. At each
node that is not a leaf (starting at the root) the range associated with
the discrimination key of the node is compared with the discrimination
value stored at the node. If the range interval lies completely above
the discrimination value, the result of a recursive call made on the right
subtree only is returned. Similarly, if the range interval lies completely
below the discrimination value, the result of a recursive call made on
the left subtree only is returned. If the range interval straddles the
discrimination value, recursive calls on both the left and right subtrees
are made. The results of the calls are concatenated and then returned.
The procedure terminates when a leaf is encountered. In this case, the
list making up the leaf is scanned and any records whose keys do not fall
in all of the range intervals are excluded. A linked list of the remaining
records is returned.

We have shown that the k-d tree can perform neighborhood searches
with respect to the Do, metric. It is simple to modify the algorithm to
perform neighborhood searches with respect to all of the metrics repre-
sented by (7) with no increase in complexity for either queries, space,
or preprocessing. It was noted previously that for a given 8, N{§, 3, c0)
contains N (6, s, n). Thus, all that must be done to implement a neigh-
borhood search for finite n is to scan the result of a N(5,8,00) search
implemented by a K-dimensional range search using a k-d tree and ex-
clude those vectors that do not fall into N(6,s,n). The complexity of a
query remains the same as the N{5, 5, 00) case, because the search via
the k-d tree is an O(log N + F) operation, and the scanning complexity
is O(F), the query complexity remains Oflog N + F) (recalling that N
is the size of the set to be searched, and F is the size of the retrieved
set) even with the addition of the exclusion step.

Feature matching in our algorithm is a neighborhood query of the
set of reduced CPN feature vectors from the model nsing the Euclidean
neighborhood N(6, R;,2), where R, is the reduced image feature we are
matching against. The value of § is adjusted so it is just large enough so
that, for most features, the correct match will be generated amongst the
other matches if the CPN feature in the image is unobscured. We have
found, in the object sets we have tested, that there are usually three or
four model features in the neighborhood of a given image feature. Each
of these matches generates a hypothesis that will need to be tested by

SThe degeneracy occurs when two or more of the keys of two distinct records
have the same value. Since the keys, in our case, are continuous variables, the
probability of this occurring is infinitesimal.

the method described in Section 3.3. Recall that a hypothesis can be
considered as an ordered pair of a model {which we kypothesize gave rise
to the image feature) and a pose transformation (which we hypothesize
will transform the model to the correct image location so as to give
rise to the image feature). When a model feature and an image feature
match, a hypothesis is generated as follows: the model which contains
the matching feature is taken to be the hypothesized model, and the
pose transformation necessary to bring the matched model feature into
alignment with the image feature is designated to be the transformation
part of the hypothesis. The details of this process are discussed in
Section 3.3.

In this section we have discussed the problem of feature matching,
and we have shown that the feature matching problem is isomorphic to
the problem of neighborhood searching. We have also shown how to
implement neighborhood searches, and hence feature matching, quickly
via k-d trees. In the following section, we discuss our approach to hy-
pothesis verification, and, in particular, we show how k-d trees may also
be used to some advantage there.

3.3 Hypothesis Verification

We now turn to the problem of hypothesis verification. Typically,
verification of a hypothesis consists of a detailed comparison of the model
of the hypothesized object at the hypothesized pose with the image {or
data derived from the image). The purpose of the comparison is to
gather evidence, positive or negative, about the hypothesis in question.
The result of the comparison is a score which rates the strength of the
hypothesis. The score depends in some way upon how closely what
actually appears in the image matches what is expected to appear ac-
cording to the hypothesis. All the available hypotheses are checked, and
the strongest (according to some criterion) are kept. These remaining
hypotheses are the algorithm’s best guess as to which objects appear in
the image, and at what pose they appear.

In terms of the discussion in Section 3.2, hypotheses are those re-
duced CPN feature vectors within a neighborhood of some image fea-
ture vector, together with some additional information: a pointer to the
model of the object which contains the feature, and the position of the
feature within the model. The model of the object is the set of all of
its -3 contours together with a list of the poses of all CPN features in
the model. This information allows the model’s pose to be transformed
to the pose indicated by the feature found in the image (and there-
fore allows the list of critical points from the model to be transformed
to their expected locations in the image). It will be convenient in the
rest of the discussion to speak of a hypothesis as being the contours
and critical points of the model after the pose transformation which
aligns the model feature to the image feature (where the model feature
matched the image feature}, not just the information necessary to effect
the transformation. Note that the pose transformation of the contours
is nothing more than the addition of an offset to the ¢ values in the f-s
representation of the contours; the offset is chosen to bring the matched
CPN from the model of the object into alignment with the image CPN.

Our verification scheme bases its decision about whether to pass or
fail a hypothesis upon two statistics: a fraction of critical points matched
Qcp; and a fraction of boundary matched Q5. We chose these two statis-
tics since past experience showed them to be effective decision variables
for a wide variety of objects. In particular, Q,, is effective for objects
possessing many critical points; it heavily weights the most informative
portions (the critical point neighborhoods) of an object’s contour. How-
ever, the statistic Q.p alone is not adequate for all kinds of objects. Some
objects, such as nails, have relatively few critical points. In these cases
employing @ in conjuction with Q,, is appropriate since these objects
often have only one or two critical points visible; all the rest may be
occluded by other objects. In addition, Q,, becomes very sensitive to
accidental matches when there are few critical points on the object. Any
contour segments on such objects are roughly equally informative, hence
the presence of any portions of the hypothesized contour in the image
can be regarded as evidence that the hypothesized object was indeed
present in the scene.

We now detail the computation of the statistics. Q.p is computed
by searching a spatial neighborhood of each critical point from the hy-
pothesis for a matching critical point in the image, and incrementing

1586

a count if one is found”. In order to match, a critical point from the
image must possess roughly the same orientation and the same sign of
curvature as the hypothesized critical point it is being matched against.
The orientation of a critical point is simply the value of § contour at the
critical point (recall that we consider the pose transformation to have
already taken place). Q.p is given by

Qop = cp/Mcm (9)

where I, is the number of model critical points in the hypothesis which
were found to match an image critical point, and M., is the total number
of critical points in the model. In order to check quickly whether there
are any critical points in the image matching a hypothesized critical
point, a second k-d tree is employed. For reasons that will shortly be-
come apparent, we shall call this k-d tree the pose tree. The pose tree is
built during the feature detection stage when the CPNs are being found.
The k'R CPN in the image is assigned a key vector (zx, Yk, sin 0k, cos),
which we shall call the pose vector. The elementz of the pose vector are
defined as follows: the ordered pair (zx,yx) is the coordinates of the
KR critical point in the image, and ¢ is the slope angle of the contour
at the critical point. The sine and cosine of §; were used in place of
8, itself to avoid branch discontinuity problems associated with direct
representation of slope (ie. the ambiguity as to the value of the integer
1 in the equation 6 = arctan(m) + 2xl, where m is the slope of the
tangent at the critical point). Each hypothesized critical point is also
asgigned a pose vector. The pose tree is then used to perform a range
query to retrieve all image critical points with roughly the same pose as
the hypothesized critical point. Let the hypothesized critical point have
the pose vector (zn, ys,8in 0y, cosfy). The range is then defined by the
4-dimensional interval (a5 % dzx,y, = dy,siné), % dsin 6, cos 8y, =+ deos §)
The values of dz, dy, dcosf, and dsinf are not critical; they must be
fairly large to allow for slight differences in pose of the hypothesis and
an instance of the object in the image. We used 4 pixels for dz and dy,
and .5 for dsin f and dcosd. If the list returned by the range query is not
empty then the count [, is incremented. This process continues until
all of the hypothesized critical points are checked, and @, may then be
computed.

We have discussed the computation of the the first statistic which is
based on the count of matched critical points. We now explain how we
perform the computation of the second statistic, the fraction of boundary
matched. The mechanics of performing the boundary comparison are
quite straightforward. The image contours are first drawn onto a bitmap
to allow easy checking of the spatial proximity of contours (the contours
are drawn white on black). Following the step of drawing the image
contours, the contours of the hypothesis are traced, sample by sample,
creating the Cartesian representation of the hypothesis. As before, the
transformation from the model to the hypothesis is chosen so that the
pose of the hypothesized CPN feature is at the same pose as the image
CPN feature that it matched. At fixed intervals of arclength, ds, a probe
is made along a line perpendicular to the hypothesis contour. The pixels
on the probe line are generated by Bressenham’s line algorithm [4] such
that the line probed is perpendicular to the hypothesis contour, and
the pixels in the line are checked up to 2 pixels on either side of the
contour. If a white pixel (which corresponds to a point on one of the
image contours) is encountered in the probe, the fraction of boundary
statistic, Qp, is incremented by the quantity ds/s;, where s, is the total
arclength of all the contours making up the hypothesis. The process
continues until all of the contours making up the hypothesis have been
probed.

We have discussed the methods used to compute Qp, and @y, but
we have yet to explain how these statistics are used to make the decision
to pass or fail a hypothesis. As would be expected, the optimal decision
regions depend upon the object set as well as the degree of occlusion
allowed. While we do not find optimal decision regions, we nevertheless
desired to be general enough to get good performance for a wide variety
of object sets and degrees of occlusion. In particular, a hypothesis is
passed if the ordered pair (Qp, Qo) falls into the following region and is
failed otherwise:

{(z,¥): 2> Ti, y> T, and Bz + (1 - By > T} . (10)

7The matching we are discussing presently in reference to hypothesis verification is
distinct from the feature matching process discussed in Section 3.2

The three thresholds and A are chosen to give the best performance with
the given object set.

3.4 Summary of the Algorithm

The previous three sections have dealt in detail with the heart of
our algorithm. In this section, we shall sunmarize the algorithm and
analyse its complexity.

Let N be the number model features, let b be the average number
of critical points per unit arclength of contour in the model set, let P
be the number of objects in the image, and let I be the number of fea~
tures detected in the image. We shall examine the offline computation
first, ignoring the low level operations of edge detection and edge link-
ing. The offline computation is composed of the following series of steps
(which have been discussed in detail above): critical point detection,
neighborhood extraction, K-L expansion, basis reduction, projection of
model CPN’s, and building of the k-d tree. These steps have complexity
O(N) = O(N/b), O(N), O(N), O(1), O(N}, and O(Nlog N) respec-
tively. Thus the entire procedure has complexity O{N log N).

The online portion of the algorithm is comprised of two major parts:
first a sequence of steps that are executed only once for each image that
the algorithm is asked to process, and a second sequence of operations
that form a loop. We have written the online portion of the algorithm
in Pascal-like pseudocode to make it as clear as possible.

Procedure ONLINE
BEGIN
DETECT~CRITICAL-POINTS;
EXTRACT-NEIGHBORHOODS;
POSE-TREE-CONSTRUCTION;
PROJECT-CPNS;
LOOP: GET-NEXT-FEATURE;
NEIGHBORHOOD-SEARCH;
VERIFY-HYPOTHESES;
REMOVE~-ASSIGNED-FEATURES;
IF MORE-FEATURES THEN LOCP ELSE DONE
END

The function of the first four steps should be clear from their names and
the preceding discussion. They have all been discussed previously. The
procedure DETECT-CRITICAL-POINTS has complexity O(I/b) = O{I);
the procedure EXTRACT-NEIGHBORHOODS has complexity O(I); the pro-
cedure POSE-TREE-CONSTRUCTION has complexity O(Jlogl); and the
procedure PROJECT-CPNS has complexity O(I). Thus, the total com-
plexity of the four steps prior to the loop is O(Ilogl). We now ex-
amine the loop body. The procedure GET-NEXT-FEATURE retrieves the
next available feature from the set of features remaining to be pro-
cessed. This procedure has complexity O(1). The next step in the loop
is NEIGHBORHOQD-SEARCH. Recall that this procedure retrieves all image
features within a neighborhood of the image feature that was obtained
by GET-NEXT-FEATURE. This procedure has complexity O(log N). Fol-
lowing NEIGHBORHOOD-SEARCH is VERIFY-HYPOTHESES. As described in
Section 3.3, this procedure decides whether the hypotheses generated
by NEIGHBORHOOD-SEARCH are good enough to be considered final hy-
potheses. This procedure is complexity O(logI) since it queries the
pose tree. Next, the procedure REMOVE-ASSIGNED-FEATURES removes
from the set of image features remaining to be processed those features
that have been determined by the hypothesis verification stage to be-
long to a final hypothesis. This is an O(1) step. Finally, a test based
on MORE-FEATURES is made. MORE-FEATURES returns TRUE if there are
additional image features to be processed by the algorithm and FALSE
otherwize. This is also an O(1) step. Thus, the complexity of the loop
body is Olog + log N). The loop will be executed at most I times
(usually considerably fewer than I times). This leads a cumulative com-
plexity of O{IlogI + I'log N) for the loop. Combining this with the
complexity of the previous four steps yields O(Ilog I + Ilog N) as the
complexity of the entire online recognition procedure.

4 Experimental Results

We now present some of the experimental results which we have col-
lected from running our recognition algorithm on a number of images.

All images were obtained from a CCD camera at 256 x 256 resolution
from a CCD camera. Each pixel was digitized to 8 bits of gray scale. We
then preprocessed all images by applying a Canny edge detector [6), and
we then applied a simple linking algorithm to trace the contours. After
the linking step, we resampled the contours so that both the Cartesian
and the #-s contours were sampled at uniform intervals of arclength. To
accomplish this, we used an operation developed in [15] which simulta-
neously smoothes the contours, resamples them, and generates both the
resampled Cartesian and #-s contours of the image.

4.1 Offline Processing

The offline processing needs to be performed only once for each dis-
tinct set of objects that the system is required to work on. After a
training image was preprocessed as described above, the next step was
the assignment of contours to object labels (our training images typically
contain several objects). The CPN features of the model contours were
then extracted using a simple one-dimensional derivative of a Gaussian
edge detector as described in Section 3.1. We then applied the K-L ex-
pansion to the CPN features to obtain the reduced basis, and the model
CPN’s were then projected onto the subspace spanned by the reduced
basis, also per Section 3.1. The projections of the CPN’s were stored for
use by the online recognition procedure.

We ran the algorithm on two sets of objects: a set of ten puzsle
pieces and a set of eleven switch parts®. The puzsle pieces are a set of
truly 2-d objects which provide a good benchmark. The switch parts
are not 2-d parts, however. We allow only the stable positions of the
switch parts to occur in an image. By treating each view of a distinct
stable position as a 2-d object, we were able to use our 2-d algorithm to
recognize the 3-d switch parts.

All of the experiments were conducted using an Apollo series 660
color workstation. Run times on this machine are roughly equivalent to
run times on a VAX 11/750.

4.2 Online Processing and Results

In this section we experimentally assess the accuracy, robustness,
and efficiency of our algorithm. We give three means of characterizing
the accuracy of our algorithm.

1. A plot of the percentage of the objects which the algorithm rec-
ognized correctly (as determined by a human observer) versus the
percentage of the object’s contour which is exposed.

2. The number of false alarms generated in each image. This is the
number of times that the algorithm predicts an object to be in the
image which is not actually there {again determined by a human
observer).

3. Figures of some of images before the recognition procedure is run,
and figures of the first image with the final hypotheses of the al-
gorithm superimposed in differing gray tones. This yields a rea-
sonable, although qualitative, measure of the positional accuracy
of our algorithm.

To characterize the robustness of our algorithm, we rely on the fact that
we have run a sizable number of experiments under widely differing
conditions, namely, two object sets, several lighting setups, and many
object placements. In addition, the plot of the percentage of objects
recognized correctly versus the percentage of the object’s contour visi-
ble makes explicit the algorithm’s robustness with respect to occlusion.
Finally, to characterize the algorithm’s efficiency, we give (in addition
to the complexity) average runtime of the algorithm from the feature
detection step onward for each object set, ie. we do not include the
low level operations of edge detection and edge linking in the runtime
figures.

After the preprocessing described earlier in this section, the online

portion of our algorithm proceeds as described in Section 3.4.
4.2.1 Puzzle Pieces

Figure 6 shows the result of running our algorithm on an image of
overlapping puzzle pieces. The left hand side of each figure is a picture

8These switch parts were provided by the Air Force. They are some of the same
parts that Cowan et al. {5} used to test ACRONYM.

1587

Figure 6: Above are the resulis of running the algorithm on an image of puzzle pieces. On the
left are the contours of an image (the contours are white). On the right are images showing the
image on the left superimposed with filled gray tone images of the final hypotheses.

of the puzzle piece contours that were extracted from the image. On the
right, filled in differing shades of gray, are the algorithm’s final hypothe-
ses as to the identity and location of the various puzzle pieces in the
image. We ran the algorithm on a total of six different images contain-
ing puzzle pieces. The example shown in Figure 6 was chosen as typical.
The algorithm generated no false alarms for any of the images contain-
ing puzzle pieces. Figure 7 summarizes the algorithm’s performance

X Data

~—— Fitted Curve

% of Puzzle Pieces Recognized
g

% of Puzzla Piece Boundary Visible

Figure 7: Percent of Objects Recognized Correctly vs. Percent of Object
Boundary Visible: Jigsaw Puzzle Pieces.

figure is exactly analogous to Figure 6.
and, in addition, makes explicit its robustness with respect to occlu-
sion. Shown there is a plot of the percentage of puzzle pieces correctly
recognized versus the percentage of the boundary of the puzzle pieces
exposed. Figure 7 shows that any puzzle piece with more than 50% of
its boundary exposed will, with high likelihood, be recognized correctly.
For those pieces with less than 50% of their boundaries exposed, the
algorithm sometimes has no hypothesis good enough to consider as a
final hypothesis. However, the fact that the number of false alarms is
so small shows that if the algorithm does have a final hypothesis, it will

TFigure 8: Above are the results of running the algorithm on an image of the switch parts. This

be correct with near certainty.

The four variables which determine the decision region specified by
(10} for the set of puszele parts are ae follows: 8 =0, Ty = .3, T} = 0,
and T3 = 0. In other words, for this part set, only Q. is used to decide
whether or not to keep a hypothesis. The reason for this is simply
that the puzzle pieces have many critical points and, as discussed in
Section 3.3, for such objects, Q.p is really the only decision variable
needed.

The average time to finish an entire image from the stage of feature
detection onward was 5.3 seconds for test images containing ten puszzle
pieces each. Humans who are familiar with the puzzle pieces generally
took at least 20 seconds to recognize all the puzzle pieces they could
from an image. However, they could usually recognize more pieces (i.e.
humans do better with less boundery visible than the algorithm). They
also averaged more false alarms per image than the algorithm did.

4.2.2 Switch Parts

Figure 8 shows the results of running our algorithm on two images
of overlapping switch parts. Experiments were conducted on a total of
fourteen images conating overlapping switch parts. As in the case of

the puzzle pieces, the images were chosen as typical examples of the
algorithm’s performance. When processing four of the images, a single
false alarm was generated. The other ten images had no false alarms.
Figure 9 gives a plot of the percentage of the switch parts that were
recognized correctly versus the percentage of part boundary visible. As
can be seen from both Figure 8 and Figure 9, the algorithm had more
difficulty recognizing the switch parts than it did recognizing the puzzle
pieces.

The decision region for the switch parts is given by (10) and the

1588

X Data
= Fitted Curve

1003
X

% of Switch Parts Recognized
b
t

% of Switch Part Boundary Visible

Figure 9: Percent of Objects Recognized Correctly vs. Percent of Object
Boundary Visible: Switch Parts

following list of parameter values: Ty = .3, To = .3, T5 = .4, §# = .6.
The runtime of the algorithm on images containing the switch parts
averaged 4.8 seconds, again from the step of feature detection onward..

5 Conclusions

In this paper, we have presented a new procedure for 2-d partially
visible object recognition. Neigborhoods of critical points were employed
ag the fundamental features. The heart of the method was the use of a
k-d tree for fast feature matching. The use of the k-d tree was made fea-
sible by applying the Karhunen-Lodve expansion to the feature vectors
to reduce the data in them by an order of magnitude. Experiments were
conducted on two sets of real objects, jigsaw puzzle pieces and switch
parts, to get an idea of the accuracy, robustness, and efficiency of our
algorithm.

The results of the experiments we have conducted and our experi-
ence developing the algorithm has led to an interesting conclusion. In
a few of the images of the switch parts, the spring was found in the
image shifted one or more cycles from the correct position. This is not
surprising since all of the critical points along the side of the spring are
very similar and generate many false hypotheses which place the spring
shifted from where it should be. Our algorithm occasionally chooses one
of the false hypotheses because it may just happen to adjoin a section of
boundary from another part, thus making Qp large enough to pass the
false hypothesis over the correct one. In fact, this scenario also leads to
most of the false alarms in the experiments. Interestingly, all of these
false alarms as well as most of the misplacements of the spring could
easily be eliminated if some simple segmentation information was em-
ployed in addition to just the shape of the edge contours. In particular,
if the background region was known, then these problems could often
be eliminated since, in many cases, such false (or poor) hypotheses will
have large sections of their contour deep in background. If this infor-
mation were available, it could be used to weaken those hypotheses,
making the correct one more likely to be chosen as a final hypothesis.
We believe that employing segmentation information will be necessary
to solve the problem in 3-d of partially visible object recognition. Qur
algorithm currently uses no information as to what is background and
what is not. Using these observations, we are currently working to ex-
tend the method presented here to the domain of 3-d partially visible
objects.

References

[1] F. Attneave, “Some Informational Aspects of Visual Perception,”
Psychological Review, Vol. 61, pp. 183-193, 1954.

[2] 3. L. Bentley and J. H. Friedman, “Data Structures for Range
Searching,” Computing Surveys, Vol. 11, No. 4, December 1979.

[3] R. C. Bolles and R. A. Cain, “Recognizing and Locating Partially
Visible Objects: The Local-Feature-Focus Method,” in Robot Vi-
sson, A. Pugh, Ed., 1984.

[4] J. E. Bressenham, “Algorithm for Computer Control of Digital
Plotters,” IBM Syst. Journal, Vol. 4, No. 1, pp. 25-30, 1965.

1589

[6] C. K. Cowan, D. M. Chelberg, and H. 8. Lim, “ACRONYM Model
Based Vision in the Intelligent Task Automation Project,” First
Conference on AIA, pp. 176-183, 1984.

[6] J.F.Canny, “Finding Edges and Lines in Images,” Master’s Thests,
MIT, 1983.

{7] H. Freeman, “Shape Description Via the Use of Critical Points,”
IEEE Conference on Pattern Recognition and Image Processing,
pp. 168-174, June 1977.

[8] T. F. Knoll and R. C. Jain, “Recognizing Partially Visible Objects
Using Feature Indexed Hypotheses”, IEEE Journal of Robotics and
Automation, vol. RA-2, No. 1, pp. 3-13, March 1986.

[9] J. Mattill, “The Bin of Parts Problem and the Ice-Box Puszle,”
Technology Review, Vol. 78, No. 7, pp. 18-19, June 1976.

[10] J. W. McKee and J. K. Aggarwal, “Computer Recognition of Par-
tial Views of Curved Objects,” IEEE Transactions on Computers,
vol. C-26, No. 8, pp. 790-800, August 1977.

[11] W. A. Perkins, “Simplified Model-based Part Locator,” Proceedings
of the 5th International Conference on Patiern Recognition, pp.
260-263, December 1980.

[12] A. Rosenfeld and A. C. Kak, Digital Picture Processing, New York/
San Francisco/London: Academic Press, pp. 109-123, 1976.

{13] J. L. Turney, T. N. Mudge, and R. A. Volz, “Recognizing Partially
Occluded Parts,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. PAMI-7, No. 4, July 1985, pp. 410-421.

[14] J. L. Turney, T. N. Mudge, and R. A. Volz, “Solving the Bin of
Parts Problem,” Vision 86 Conference Proceedings, pp. 4-21 - 4-
38, 1986.

[15] J. L. Turney, “Recognition of Partially Occluded Parts”, PhD. dis-
sertation, University of Michigan, 1986.

[16] K. R. Yam, W. N. Martin, and J. K. Aggarwal, “Analysis of Scenes
Containing Several Occluding Curvilinear Objects,” University of
Texas at Austin Technical Report TR-135, February, 1980.

